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ABSTRACT
Many security-critical services on mobile devices rely on Trusted
Execution Environments (TEEs). However, due to the proprietary
and locked-down nature of TEEs, the available information about
these systems is scarce. In recent years, we have witnessed several
exploits targeting all major commercially used TEEs, which raises
questions about the capabilities of TEEs to provide the expected
integrity and confidentiality guarantees. In this paper, we evaluate
the exploitability of TEEs by analyzing common flaws from the
perspective of an adversary. We provide multiple vulnerable TEE
applications for OP-TEE, a reference implementation for TEEs, and
elaborate on the steps necessary for their exploitation on an An-
droid system. Our vulnerable examples are inspired by real-world
exploits seen in-the-wild on commercially used TEEs. With this
work, we provide developers and researchers with introductory
knowledge to realistically assess the capabilities of TEEs. For these
purposes, we also make our examples publicly available.
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• Security and privacy → Trusted computing; Mobile plat-
form security; Software security engineering.
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1 INTRODUCTION
Trusted Execution Environments (TEEs) are the backbone of se-
curity architectures for a vast majority of modern mobile devices.
Security-critical features like mobile payment, user authentication,
or digital media protection, leverage the TEE to provide a level of se-
curity beyond the capabilities of the regular Operating System (OS)
(e.g., Android or iOS). Despite being critical for a device’s security,
knowledge is sparse about the systems that power the root-of-trust
of the devices we use daily.
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Reflecting on recent history, we can see that all major commer-
cially used TEEs failed. For instance, the TEE implementations of
popular devices like the Google Nexus 6 [10], the Samsung Galaxy
S7 Edge [11], or the Huawei P9 [30] were successfully compromised.
Veritable incidents like these leave researchers and industry pro-
fessionals in the dark: How is it even possible to break into a TEE,
and if so, what would be the consequences? To fully understand
and begin to answer these questions, these exploits need to be re-
capitulated. Unfortunately, for multiple reasons, it is exceedingly
difficult to replicate real-world exploits targeting TEEs. We shall
detail on the top three reasons, applicable for most cases. Firstly, re-
production requires the availability of the corresponding hardware
platform. Secondly, a specific vulnerable firmware version must
be installed on the target device. Thirdly, a deep level of expertise
is necessary to reproduce a real-world exploit on a platform of a
particular vendor.

In this paper, we fill this knowledge gap by providing multiple
vulnerable TEE applications and elaborate on the steps an adversary
would take to exploit these flaws. Moreover, we base this discussion
on OP-TEE, an open-source reference implementation for ARM
TrustZone (TZ)-based TEEs. Using OP-TEE allows us to overcome
the three major problems of real-world exploits, mentioned above
when encountering real-world exploits. Beginning firstly by using
virtual hardware (e.g., an emulator), we overcome the hardware
dependencies. Next, we can compile and execute our own examples
of vulnerabilities, which are not dependent on specific firmware
versions. From this, we can focus on the most important aspects of
the vulnerabilities and the root causes for their exploitation without
the need to reverse-engineer vendor-specific proprietary firmware
components.

In particular, our contributions are the following:

• We provide multiple real-world examples of vulnerable TEE
applications and elaborate on their exploitability.

• Our discussion about the exploitability of TEEs is based on
open-source software and our examples are publicly avail-
able as an educational tool1.

• We put each step of the exploitation process into an under-
standable context and pinpoint how commercially used TEEs
were affected by certain design choices.

2 BACKGROUND
The underlying hardware of a computing system dictates its trusted
computing capabilities. Sincemodernmobile devices predominantly

1https://github.com/teesec-research/optee_examples
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Figure 1: ARM TrustZone splits the software architecture of
mobile devices into two states, the SW and the NW.

use ARM chipsets, our work concentrates on the capabilities pro-
vided on ARM-based systems. Thus, this section gives an overview
of software architectures as used on modern mobile devices.

2.1 ARMv8-A and ARM TrustZone
ARM TZ on the ARMv8-A ISA partitions the software architecture
of a mobile device into two states, the Secure World (SW) and the
Normal World (NW) [6], as illustrated in Figure 1. Each of these
states has up to four privilege levels, called Exception Levels (ELs).
The NW is hosting a traditional Rich Operating System (RichOS)
such as Android on N-EL1 and its userland applications on N-
EL0, whereas the SW is hosting a small Trusted Operating System
(TrustedOS) on S-EL1 and its userland on S-EL0. In this work, we
refer to NW and SW userland applications as Client Applications
(CAs) and Trusted Applications (TAs), respectively.

The current state of a CPU core is indicated by an additional
Non-Secure (NS) State bit transmitted via the Secure Configuration
Register (SCR) [4] over the AXI system bus to all connected hard-
ware components [3]. This mechanism enables system designers to
introduce TZ-aware peripherals that can exclusively be accessed
by software running in the SW. A common use case on mobile
devices is to make the fingerprint sensor only available to the SW
to prevent leakage of fingerprint images to the untrusted NW.

To protect the SW from the NW, thememory controller is usually
configured to deny all accesses to memory hosting SW code and
data. This hardware-enforced isolation does not apply vice-versa,
making the SW the higher privileged context. In order to transition
from one world to the other, an OS has to call the Monitor (S-EL3)
using a privileged instruction (e.g., smc).

A common Android system service utilizing TZ capabilities is
the keystore system [19]. It allows for the generation and storage
of cryptographic keys within the TEE. Additionally, it provides
an Application Programming Interface (API) to carry out crypto-
graphic operations using these TEE-backed and export-protected
keys. From an app’s perspective, a typical interaction with the key-
master TA (i.e., the TEE-based portion of the keystore system) looks
as depicted in Figure 2. First, an app requests the generation of a
key from the keystored, which is a system service running in the

App keystored keymaster TA
gen_key(alias, ...) gen key

kbenc

store 
alias : keyblobenc

enc(alias, data)

gen key

encKEK(kb)

enc(kbenc, data)

decKEK(kbenc)

enckb(data)
dataencdataenc

Figure 2: Generation andusage of cryptographic keyswithin
the Android keystore system.

background. The keystored is the CA in this use case, responsible
for forwarding the request to the keymaster TA. Then, the request
is not directly passed to the TA but must be passed through the
RichOS, Monitor, and TrustedOS before it reaches its destination.
Next, the keymaster TA generates the key as requested and encrypts
the resulting key blob (kb) using a key encryption key (KEK). Lastly,
the keystored only receives the encrypted key blob and stores it
using the alias initially provided by the app. Using this alias, the
app can refer to this key in succeeding cryptographic operations.
Figure 2 illustrates how an encryption operation using the freshly
generated key would be carried out.

2.2 Attack Surface
Cerdeira et al. [15] point out that the Trusted Computing Bases
(TCBs) of TEEs used on mobile devices are excessive. TAs account
for the largest portion of the TCB in commercially used systems.
Additionally, most of the logic provided by TAs is accessible from
N-EL0 (e.g., NW user-mode) using the communication infrastruc-
ture provided by the RichOS. The TrustedOS or the Monitor, in
contrast, are not directly accessible from this context. Therefore,
we concentrate on flaws in TAs in this research.

As mentioned in Section 2.1 and depicted in the keystore system
example in Figure 2, third-party apps do not directly interact with
TAs. Instead, on Android systems, it is usually a system service
having the capabilities to access the RichOS interface to the TEE
that carries out the interaction. Consequently, an adversary would
at least need a two-stage privilege escalation to get into the TEE.
First, a privilege escalation to a system service with proper capa-
bilities (i.e., as shown by Beniamini [9] and Stephens [30]) and,
second, another exploit to gain code execution within any TA. In
this research, we focus on the second of these two stages.

All manufacturers of commercially used TEEs use programming
languages with explicit memory management (e.g., C and C++) to
develop TAs. Inherent to this choice of programming languages
is the risk of memory safety violations. Lapid et al. [22] discussed
the consequences of a stack-based buffer overflow originally found
by Beniamini [11] in an OTP TA that was shipped with Samsung
devices. This TA implements a mechanism to generate one-time



Memory Corruption Attacks within Android TEEs:
A Case Study Based on OP-TEE ARES 2020, August 25–28, 2020, Virtual Event, Ireland

passwords on the device. As Lapid et al. point out, using the buffer
overflow to gain code execution within the TA is fatal because it has
the same capabilities as the keymaster TA in this implementation
and, therefore, can access the key-encryption key (see Figure 2).

A further example of a memory-corruption bug in a secure stor-
age TA shipped to Huawei devices is mentioned by Machiry et
al. [24] and demonstrated by Stephens [30] (e.g.,CVE-2016-8764 [26]).
The problem in this TA is a type-confusion bug that lets an attacker
read from or write to arbitrary memory within the virtual address
space of the TA. Using this flaw, Stephens demonstrates how to ma-
nipulate the fingerprint TA to accept any fingerprint. Since he has
access to the fingerprint TA’s memory, he could have also leaked
sensitive fingerprint data of users.

As Busch and Dirsch [13] later found, this very same secure
storage TA had a heap-based buffer overflow vulnerability, which
was already fixed by the vendor at the time of the finding. Heap
metadata attacks are one of the primary ways for attackers to
exploit memory corruption vulnerabilities [16] and as dangerous
as stack-based buffer overflows.

2.3 Peculiarities of AArch64
Since both x86 and x86-64 processors follow CISC principles with
variable-length instruction opcodes, many instructions without
memory addresses can be encoded in one byte. When using Re-
turn Oriented Programming (ROP) for exploitation, this can be
an advantage for the attacker, since the one-byte opcodes of the
instruction set include instructions like ret, popping values from
the stack into a register, and jumping to the specified address [25].
Since instructions do not need to be aligned, it is, in general, easier
to find suitable ROP gadgets. In contrast, AArch64 uses four-byte
instructions that have to be aligned. Moreover, since the return in-
struction, ret on AArch64, reads the return pointer from a register,
already eight bytes of correct instruction opcodes are required at
the end of every ROP gadget. In general, this reduces the probability
of finding suitable ROP gadgets compared to the x86 architecture.

Due to the function call return pointer being passed via the link
register, its placement on the stack is optional, and not necessary
for leaf functions, for functions only invoking other functions at the
end of their own code, or for functions inlining all inferior functions’
code. This causes only a few functions’ epilogues to be suitable as a
ROP gadget. For AArch64 the Procedure Call Standard for the ARM
64-bit Architecture (AAPCS64) specifies how data is arranged in the
stack frame. In contrast to x86, AArch64 stores the link register last
on the stack. Therefore, a stack-based buffer overflow requires at
least two function returns before the overwritten return instruction
pointer is popped from the stack. The stack layout on AArch64 is
depicted in Figure 3 conforming AAPCS64.

3 METHODOLOGY
Our research focuses on the Open Portable Trusted Execution En-
vironment (OP-TEE), an open-source reference implementation
for TZ-based TEEs. We implemented multiple vulnerable TAs on
OP-TEE that are inspired by flaws seen “in the wild” within commer-
cially used TEEs [2, 10, 11, 13, 30]. These flaws include stack-based
buffer overflows, type-confusion bugs, and heap corruption vulner-
abilities.

Figure 3: Visualization of the ordering of data within stack
frames on AArch64, as shown on the AAPCS64 standard [7,
Image "Example stack frame layout"]. Higher addresses are
on top.

Having these vulnerable TAs, we take the perspective of an ad-
versary and systematically assess OP-TEE to escalate a memory
corruption to more powerful exploitation primitives. For this pur-
pose, we selectively review OP-TEE’s source code [23] and analyze
the compiled binaries of our vulnerable examples. Section 4 pro-
vides relevant insights on OP-TEE that we distilled from reviewing
OP-TEE’s source code and build system. Section 5 and Section 6 con-
tain our results from statically and dynamically analyzing binaries
of TAs.

4 ARCHITECTURE OF OP-TEE
OP-TEE is the most favorable choice for TEE-related experiments
on Android. It can run on an emulator as well as on compara-
tively inexpensive development boards. The latter option allows
for a setup containing Android, OP-TEE, and the ARM Trusted-
Firmware [20], which comes close to the software architectures
found on commercially available devices. Furthermore, it is actively
maintained and well documented.

In this section, we discuss several aspects relevant to an adver-
sary trying to exploit memory corruption vulnerabilities in OP-TEE
TAs.

4.1 TA Instance and Session Model
Depending on the TA’s configuration, OP-TEE can run a TA mul-
tiple times in parallel, creating multiple instances of the same TA.
These instances behave similarly to processes on other operating
systems, e.g., by assigning dedicated writable memory regions to
each of the instances to avoid influence on each other. The com-
munication of a client application running in the NW with a TA is
implemented as a session model. This model is widespread among
different TEE implementations and many vendors are compliant
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with the APIs specified by GlobalPlatform [17, 18] (so is OP-TEE).
A client application can open a session, request the execution of
commands within an established session, and close the session.
Differing from RichOSs like Linux or Windows, the lifetime of a TA
instance within OP-TEE is controlled by OP-TEE according to the
TA’s configuration properties. These options determine whether
multiple sessions are handled by the same or by different TA in-
stances and whether resources are fully deallocated upon release of
the last active session. Within an instance, only a single thread can
run at any point in time, ensuring that there is no parallel execution
requiring error-prone synchronization and locking mechanisms.
An adversary needs to be aware of the instance and session model
of TAs in order to set the target up to accept commands.

4.2 Communication Path from Android
Application to TA

As already mentioned in Section 2, a CA makes use of the commu-
nication infrastructure exposed by the RichOS to interact with a
TA. On OP-TEE the libteec library is used as an abstraction for
the low-level ioctl interface of the TEE driver that implements the
NW side of the communication infrastructure. Either the libteec
interface or the ioctl interface of the TEE driver are the primary
entry points to launch an attack against a TA.

Note, in order to pass buffer contents to a TA, a CA passes a
pointer from within its virtual address space to the RichOS. Since
NW and SW have different page tables, the RichOS and TrustedOS
have to use a convention about how to translate addresses from
their user-mode applications to each other. On OP-TEE, the RichOS
copies the buffer contents to a dedicated shared-memory region,
which is accessible from both worlds. It then passes the physical
address of the copied buffer to the TrustedOS. The shared memory
infrastructure is a difficult component in TEE-backed systems, and
almost all vendors struggled with correct implementations in the
beginning [24]. This aspect of TEEs will become relevant later in
Section 5.2 where we elaborate on type-confusion bugs.

4.3 Exiting TAs
A memory corruption most likely results in a crash of the target.
An adversary is usually interested in properly exiting the target
to use subsequent interactions with the same TA instance in an
exploit.

An interaction with a TA consists of a sequence of command in-
vocations. During a command invocation, an OP-TEE TA is entered
via its __utee_entry() function and left using a special system
call that can signal the state of the TA to the TrustedOS. A proper
exit indicates a TEE_SCN_RETURN to the OP-TEE kernel, which
results in the target being able to receive further commands.

4.4 OP-TEE TA Libraries and Tools
OP-TEE enforces a write-never-execute policy within its TAs, mean-
ing that a writable page can never be executed. This policy forbids
the placement of shellcode in the target’s address space. Conse-
quently, an adversary has to launch code-reuse attacks (e.g., Return
Oriented Programming).

Code-reuse attacks are dependent on the executable code that
is already mapped in the virtual address space of the TA. OP-TEE

provides many libraries to facilitate the life of TA developers. These
libraries include libutils, libmpa, libmbedtls, and libutee, and imple-
ment commonly used features of ISO C, multi-precision integer
representations, and cryptographic functions. Since those libraries
are mapped in the address space of the TAs, they are relevant for
code-reuse attacks.

Furthermore, to load a TA OP-TEE uses a loader called LDELF.
LDELF is a module executed within the virtual address space of the
TA, which is responsible for loading the TA ELF file. One may note
that the LDELF binary is not unmapped and can also serve as a
target for code-reuse attacks.

4.5 Memory Layout and ASLR
An effective code-reuse attack requires knowledge about mapped
memory contents and their locations. Therefore, we review the
common memory layout of OP-TEE TAs.

Typical mitigation against code-reuse attacks is Address Space
Layout Randomization (ASLR). The essential idea is to randomize
the placement of code within the virtual address space to prevent an
adversary from determining the location of reusable code fragments.
Although OP-TEE provides ASLR on AArch32, it is not supported
on AArch64 builds, which is our target. According to Cerdeira et
al. [15], all commercially used TEEs lack of proper ASLR and, thus,
OP-TEE serves as a realistic environment for experiments.

Generally, the Memory Management Unit (MMU) abstraction of
OP-TEE always assigns the lowest-possible address to newmemory
mappings within an appropriate range and the padding configured,
if not instructed with a specific address to be used, resulting in a
predictable stacking behavior. A schematic of OP-TEE’s memory
mappings is depicted in Figure 4. Reviewing OP-TEE’s source code
reveals that no padding nor specific address for new memory re-
gions is configured, which causes mappings to generally be placed
next to each other without any guard pages.

The QEMUv8 target of OP-TEE uses an MMU abstraction layer
that, by default, starts mapping memory at address 0x4000 0000. As
depicted in Figure 4, the first mapping in the address space is the
OP-TEE kernel itself, which is not accessible from a TA running in
S-EL0. All further mappings are visible from a TA’s perspective.

Following kernel memory and a guard page, OP-TEE successively
maps the LDELF binary segments (stack, text, data, and heap) to
0x4000 4000. The loader then loads the TA segments in the address
space directly after the loader itself without a guard page. Since
all page sizes of LDELF and the TA are deterministic, the memory
addresses of the pages in the virtual address space of the TA are
deterministic as well. The loader also places the stack of a fixed size
(defined at compile time) right after the TA segments, which makes
those addresses deterministic too. Next, the loader maps additional
pages after the stack, such as additional ELF files, empty pages for
further use, and parameters of the current call to the TA instance.
Around parameters, but not in between, the loader adds one guard
page.

The heap of a TA is part of the .bss segment, its size is determined
at compile-time. Although both the OP-TEE kernel and the heap
allocator (BGET) offer options to allocate additional memory at
runtime, this feature is currently not implemented.
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The absence of ASLR and the deterministic placement of all
memory mappings make addresses in the virtual address space
of OP-TEE TAs predictable for an adversary. These circumstances
facilitate exploit development tremendously because all locations
required for code-reuse attacks are known.

5 CONTROL FLOW HIJACKING
In this section, we describe several ways to hijack the control flow
of a TA using memory corruption vulnerabilities. The chosen vul-
nerabilities are inspired by memory corruptions from TAs that
were shipped with commercially available mobile devices. For each
of the vulnerabilities, we implemented example TAs for OP-TEE
and studied their exploitability. In order for other researchers, ven-
dors, and educators to use our insights, we open-source our vul-
nerable OP-TEE TAs, including their corresponding exploits on
https://github.com/teesec-research/optee_examples.

5.1 Stack-based Buffer Overflows
A stack-based buffer overflow is a stereotypical example for control
flow hijacking, given a missing length check or a suitable integer
overflow. By default, the build system for OP-TEE TAs does not
generate any protection against stack-based buffer overflows (e.g.,
stack canaries). As mentioned in Section 2.3, overwriting a stack-
based buffer will not overwrite the return instruction pointer of the
declaring function, but of its caller. This situation is also depicted in
the stack layout shown in Figure 5. Thus, depending on the context
of the overflow, new stack contents must be carefully crafted to
avoid restoring unexpected values into variables saved on the stack,
risking a crash within the parent function before the control flow
can be hijacked.

As shown in Figure 4, the stack is located above the heap, without
any guard page separating these memory regions. Consequently,
if a heap-based buffer overflow occurs, an adversary is also able
to overwrite the stack. Note, the exploit must take care of the
overwritten memory contents before reaching the stack to avoid
crashes.
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Figure 5: Using an arbitrarily long memcpy() either on the
stack or the heap, an adversary can overwrite return instruc-
tion pointers on the stack (lr) withinOP-TEETAs. Leaf func-
tions (memcpy() in this case) do not store the return instruc-
tion pointer on the stack.

A heap-based buffer overflow also has one advantage: Since the
buffer overflow starts overwriting memory below the innermost
stack frame, using the overflow might be able to overwrite the
innermost return instruction pointer of the stack, instead of de-
pending on the location of the overwritten buffer on the stack. This
memory layout can reduce the risk of corrupting data on the stack
by hijacking the control flow earlier, and overwriting less, if no
ROP chain is necessary, as shown in Figure 5.

The stack-based and heap-based buffer overflows, as explained in
this section, were present on TAs used on mobile devices purchased
by millions of customers. For instance, a similar stack-based buffer
overflow vulnerability was exploited within an OTP TA on the pop-
ular Samsung Galaxy S7 Edge, as already mentioned in Section 2.2.

https://github.com/teesec-research/optee_examples
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Furthermore, the memory layout that allows overflowing from the
heap into the stack (because of missing guard pages) is similar to
the heap-based buffer overflow found within the secure storage TA
on the popular Huawei P9 Lite (also mentioned in Section 2.2).

In our examples available on https://github.com/teesec-research/
optee_examples we provide the vuln TA, which has a stack-based
buffer overflow vulnerability. It can be used for the reproduction of
our analysis and further inspection. The vuln TA also contains a
type confusion bug, which is evaluated in the following Section 5.2.

5.2 Type-Confusion Bugs
As pointed out by Machiry et al. [24], a lack of type validation
enables an adversary to bypass pointer sanitization mechanisms if
pointers can be passed as non-pointer types; which can also be ob-
served in the wild. An example of an exploit using a type-confusion
bug was demonstrated by Stephens [30]. Since the implemented
GlobalPlatform API uses union types and associated type fields
for its parameters, with either pointers or integers present in the
same memory, OP-TEE TAs are potentially vulnerable to this type
of attack.

Although the union types are similar, the sanitization during con-
version, as described in Section 4.2, is not performed after copying
of the data. Instead, OP-TEE treats the union types and less similar
intermediate types as completely different data structures, and only
selectively copies and passes appropriate contents. Figure 6 shows
the memory layouts for the different parameter types based on our
code review. With the union type’s data layout, a type confusion
allows us to pass two integer values treated as a pointer, which
depending on whether an output or input buffer is expected can
lead to both, data leaks and data manipulation.

In this situation, however, there is an additional size field. If the
parameter contains a struct with constant size, a string, or binary
data in OUTPUT or INOUT buffers, usually a size check can be
expected, if it has not been omitted too by mistake. Otherwise, for
binary data with varying length read from INPUT buffers, the size
itself might determine the amount to be read. Thus, it is important

to accomplish at best a controllable, at least a non-zero value to be
present in the size field.

Favorably, during the last conversion step within libutee, for both
command invocation and session initialization, the parameters are
placed on the stack and then passed to the TA code by reference.
Our dynamic analysis reveals that this stack position is constant,
and the stack memory is not wiped before being selectively written.

As a result, the value of the size field of the last call passing a
memory reference will still be present during later calls. This allows
an attacker to invoke the TA with an appropriately sized buffer to
set the size. Whether this call is successful or fails with an error
code is irrelevant and does not change the outcome, as long as it
does not crash the TA. Then, the attacker can invoke a command
using a parameter as a buffer without checking its type, and pass
a pointer declared as an integer value to the TA, circumventing
pointer sanitization. Since there is no ASLR present, the pointer to
be passed can be calculated based on the memory layout illustrated
in Section 4.5.

The vulnerable command implementation will then either read
and process input data expected to lie in shared memory, but actu-
ally reading its own private memory, potentially exposing its con-
tents. Alternatively, the implementation might write at the specified
location to return a result via an output buffer instead of modifying
its own private memory.

The applicability of such an attackmay depend on the complexity
of the data processed by a TA. A simple vulnerable echo command
copying data between two buffers could be an easily exploitable
example, while commands with a single buffer, only exposing or
injecting data via integer parameters, after multiple calls or after
complex processing of the data read or to be written may increase
the effort necessary for such an exploit.

Examination of the kernel code responsible for calling a Pseudo
Trusted Application (PTA) exposes a similar situation. Again pa-
rameters are passed to the PTA without wiping unused parameter
fields and only wiping completely unused parameters. This results
in similar options for the exploitation of the kernel from a malicious
TA, given the lack of type checks within PTA code.

5.3 Heap-Corruption Bugs
Corresponding to heap exploitation on Linux [29], TAs potentially
contain similar vulnerabilities. Since a client can request the execu-
tion of multiple commands by the TA within the same session, we
have a good precondition for heap exploits. This exposes the risk
of double-free and use-after-free vulnerabilities. Of course, the ex-
ploitability highly depends on the heap implementation and exploit
primitives provided by the individual TA. For OP-TEE, the fact that
the heap is not subject to ASLR, is beneficial for exploitability.

As mentioned in Section 4.5, OP-TEE uses the BGET heap im-
plementation [31]. Using a double-free vulnerability, it is possible
to manipulate BGET’s free list to gain an arbitrary read and write
primitive. Furthermore, the merging process of different chunks
can be used to overwrite the fields of other chunks. As heap ex-
ploits highly depend on the heap implementation, we do not discuss
further technical details about BGET in this paper and refer the

https://github.com/teesec-research/optee_examples
https://github.com/teesec-research/optee_examples
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interested reader to our open-sourced examples. We provide a de-
tailed example TA with a double-free heap vulnerability (heap TA)
and an example exploit open-sourced with this work.

6 ARBITRARY CODE EXECUTION
Once an attacker hijacked the control flow, usually the goal is
arbitrary code execution.We evaluate two techniques for leveraging
vulnerabilities to the execution of arbitrary code. First, we elaborate
on the injection of shellcode into the target TA. We then focus on
the applicability of Return Oriented Programming (ROP) in the
context of TAs.

6.1 Shellcode Injection
Given control over the program counter and the stack, it is not possi-
ble to directly insert shellcode for arbitrary code execution. Similar
to the Never Execute (NX) flag on x86-based systems, ARMv8-A
AArch64 supports an Execute Never (XN) flag. OP-TEE uses this
flag by default, thus, memory regions are either writable or exe-
cutable but never both.

In theory, it is possible to have write-executable memory within
OP-TEE TAs. This configuration can be accomplished by modifying
the linker script shipped with the TA software development kit.
However, additional mitigation for wx memory used by OP-TEE is
the system-wide Write-Execute-Never (WXN) flag [5] within the
CPU control register (SCTLR_EL1). This flag is set by OP-TEE (e.g.,
configuration option CFG_CORE_RWDATA_NOEXEC) at an early
stage and is never disabled again. When switching between SW
and NW, the Monitor can be expected to switch and restore the
appropriate control registers for EL1 for both the OP-TEE and the
Linux environment. This will cause all memory regions with write
permissions to be treated as XN [5], effectively preventing any code
execution on writable memory, independent of the flags, which
OP-TEE configured in the MMU page tables.

A scenario as described by Stephens [30], where rwx memory is
part of each TA, is therefore only possible with heavy modifications
of OP-TEE’s default configuration. Instead, an adversary needs to
leverage the existing code to launch a code-reuse attack such as
ROP. Beniamini was the first to make a TA exploit based on the ROP
technique publicly available [10]. His target was a Digital Rights
Management (DRM) TA, called Widevine, which was distributed
with the Google Nexus 6 mobile phone.

6.2 Return-oriented Programming (ROP)
A ROP chain that can call arbitrary functions and copy memory
contents of a TA into thememory region sharedwith the NW can be
considered an arbitrary code execution. This ROP chain necessarily
needs ROP gadgets that can set function parameters (e.g., x0 – x7).
Thus, to evaluate the viability of ROP, we analyze the availability
of ROP gadgets and jump gadgets in OP-TEE TAs. Additionally, we
study the primitives found in the TA and LDELF binaries.

6.2.1 ROP gadgets within TAs. To get an overview of available
ROP gadgets in an OP-TEE TA, we examine the commonly mapped
code of a TA using tools like ropper [28] and xrop [14]. The result
shows that there are only little useful gadgets available. Many
results returned by these tools are not usable as a gadget since
they include all sequences of instructions ending with a ret. As

discussed earlier in Section 2.3, leaf functions do not pop the return
instruction pointer from the stack, rendering the gadget unusable
for an attack. Further results contain conditional jumps, function
calls, or memory accesses that depend on values determined during
runtime, which often prevents their use in a ROP chain. In general,
gadgets that set function parameters (e.g., registers x0 to x7) are
rare, while gadgets that restore callee-saved registers (e.g., x19 to
x28) are more common.

Parameter and Result Register x0. A common gadget found allows
us to set x0, which is used as the first parameter of a function or a
function return value. The original purpose of the following gadget
is to return a variable in the x19 register by moving its value to the
x0 register:

AArch64-Assembly
1mov x0, x19;
2ldp x19, x20, [sp, #0x10]; # relative addressing
3ldp x29, x30, [sp], #0x20; # manipulation of SP prior to use
4ret;

By calling this gadget twice, we can control the value of the x0
register. This or similar gadgets tend to be present in TAs since it
is used to return the value of a variable stored in x19. However, for
further 64-bit parameter registers, there are not necessarily suitable
ROP gadgets available.

Further Parameter Registers x1 – x7. Thinking from a compiler’s
perspective, we can explain the lack of parameter-setting gadgets
in the following way: the parameter registers x1 – x7 are used
as scratch registers except for subroutine calls. Consequently, the
compiler is free to use them for the storage of variables in between
subroutine calls, effectively mandating their use as caller-saved
registers. Due to this circumstance, these registers will usually
not be popped or otherwise intentionally set within the function
epilogue. According to the AAPCS64, these registers are intended
for result values, too, but this only manifests when returning result
values larger than 64 bit, which is rare.

6.2.2 Jump-oriented Programming Gadgets. To increase the avail-
able amount of gadgets, we can use the so-called “functional gadgets”
from the Jump-oriented Programming technique [12]. This tech-
nique allows us to regain control over the control flow by setting
register values that will be jumped to.

An analysis of our example TAs reveals the presence of such
gadgets. The following gadget moves data from callee-saved reg-
isters to parameter registers x0 – x3 and then jumps to one of the
callee-saved registers.

AArch64-Assembly
1mov x2, x19
2mov x1, x20
3mov x0, x21
4blr x25

In combination with another (more common) gadget that loads
stack values into callee-saved registers, we have an effective ROP
chain to set the first three parameters. That second gadget looks as
follows.
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AArch64-Assembly
1ldp x19, x20, [sp, #0x10];
2ldp x21, x22, [sp, #0x20];
3ldp x23, x24, [sp, #0x30];
4ldp x25, x26, [sp, #0x40];
5ldp x29, x30, [sp], #0xe0;
6ret;

6.2.3 GCC Register Usage. For more complex TAs, the occurrence
of helper functions that unpack values from a referenced structure
and pass them to a leaf function is likely. Instead of only relying on
ROP gadgets, such a helper function could help to get a primitive
for setting further parameter registers. Examples for such functions
could be helper functions for arithmetic operations:

Exemplary arithmetic function to test for unchanged regis-
ters

1uint64_t animate(struct animation_definition* animation)
2{
3return calc_animation(animation->parameter1, /* seven more

↩→ parameters */);
4}
5
6uint64_t calc_animation(uint64_t parameter1, /* seven more

↩→ parameters */)
7{
8// do calculation
9return /* some arithmetic result */;
10}

Alternatively, debugging helper functions invoking functions
such as printf() might be of use, since printf() shifts and then
passes its parameters to vsnprintf(), and then only overwrites a
few of these when calling puts() and the syscall. These function
are mostly side-effect free and could look like this:

Exemplary print function to test for unchanged registers
1void debug_print_animation(struct animation_definition* animation)
2{
3printf("animation values:%llu, <repeat six times>", animation->

↩→ parameter1, /* six more parameters */);
4}

In our investigation, we found that such functions usually over-
write the parameter registers. The reason for the overwritten regis-
ters is that GCC’s heuristic for register assignment prefers reusing
these parameters for local variables if the parameters’ values are
not required again later in the function. OP-TEE is compiled using
a GCC compiler toolchain.

An example of a suitable function could contain a conditional
use of the parameters omitted at runtime. This has caused GCC
to keep parameters in their original registers during the examina-
tion of different variants of such functions. However, the manual
identification of such functions during reverse engineering can be
expected to require a notable effort.

Further research might help to automatically identify whole
functions that are suitable for integration in ROP chains using
symbolic execution of binary code. Such techniques go beyond the

current capabilities of traditional gadget-search tools like xrop or
ropper.

In summary, leaf functions such as vsnprintf() and the exem-
plary calc_animation() function cannot be expected to leave the
parameter registers unchanged.

6.2.4 Available Workarounds. The version 3.6.0 of OP-TEE features
a command for TAs to change memory permissions. Unfortunately,
the corresponding function requires five parameter registers to be
set accordingly, which leaves us with a chicken-and-egg scenario.

However, the LDELF module uses this functionality, and we
found that it is still mappedwhen the TA is running. LDELF contains
a helper method ta_elf_finalize_mappings() which takes only
one parameter that points to a descriptor that sets the permission
flags on the specified memory regions. Since an attacker can expect
gadgets to be present to set the first parameter, this function can
be called from a ROP chain. The descriptor consists of multiple
structs with pointers to each other. Thus, when constructing such a
descriptor, its resulting address has to be known. The choice of the
section to be remapped with new access permissions is restricted:
only memory registered by OP-TEE as a region can be remapped,
which excludes shared memory. Useful choices could be the whole
segment consisting of the .data and the .bss sections as well as the
stack and the heap. Once code execution is possible, the memory
can be restored after any malicious operation to its previous state,
avoiding permission faults that would crash the TA.

6.2.5 Conclusion. With our discussion of gaining arbitrary code
execution within OP-TEE TAs, we conclude our research about
the exploitability of TAs. As we have shown, depending on the
compiler behavior and architectural characteristics, it can be chal-
lenging to gain arbitrary code execution within the context of a
TA. Nevertheless, the exploits targeting commercially used TAs
prove that it is possible to escalate memory corruptions to a full-
fledged arbitrary code execution. Those exploits [10, 11, 30] use
different techniques and multiple stages to achieve that goal, requir-
ing in-depth knowledge of the TEE and the target TA. For further
reference, our open-sourced code also provides an example exploit
utilizing ROP to gain code execution in the vuln TA.

7 RELATEDWORK
A recent study by Cerdeira et al. [15] gives an overview of issues
found in TEEs in general. The vulnerabilities discussed in our work
are validated bugs in their categorization of implementation issues.
Complementing the work by Cerdeira et al., we elaborate on the
viability of exploits on TEEs taking OP-TEE as an example.

With their work on PARTEmu, Harrison et al. [21] introduce a re-
hosting solution to run proprietary TrustedOSs in an emulator. In
their evaluation, they ran a coverage-guided fuzzer on production
TAs and found several new bugs. These bugs are not disclosed yet,
but could be memory corruptions that can be leveraged for exploits
as discussed in our work.

Machiry et al. presented Boomerang [24], a new category of bugs
within TEEs that results from the semantic gap between the SW
and the NW. If not properly sanitized, a pointer sent from the NW
to a TA can result in the corruption of NW memory according to
Machiry et al.. The type-confusion bug discussed in our work is
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related to this issue and results from improper validation of inputs
that originated from the untrusted NW.

Furthermore, all commercially used TEEs have been investigated
individually by researchers [1, 2, 8, 10, 11, 13, 22, 27, 30]. The bugs
presented in our work are in particular inspired by Stephens [30],
Beniamini [11], and our previous work on the Huawei’s TEE [13].

8 SUMMARY
In this paper, we reviewed the exploitability of TEE vulnerabilities
in TAs. In particular, we focused on the exploitation of TAs for
OP-TEE, a reference implementation for TZ-based TEEs. Inspired
by several memory-safety violations found in the wild, we looked at
the options and challenges of an adversary. We evaluated different
techniques to take control over control flow and gain arbitrary code
execution within the context of a TA. To foster research on TEE
security, we make our example applications and exploits publicly
available.
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